STRUCTURE OF THE CONDENSATION PRODUCT OF BENZAMIDRALONIUM IODIDE WITH ACETYLACETONE

V. A. Khrustalev, K. N. Zelenin, and O. V. Solod

UDC 547.772.2.04

Attempts to synthesize the little studied 1,2,4-triazepine derivatives from β -dicarbonyl compounds and amidrazones or their salts have been unsuccessful [1-3], and the primary condensation products were assigned a hydrazone structure. In any case, such compounds can exist in theory in not only two linear forms (hydrazone and ene hydrazine), but also three cyclic forms, viz., 5-hydroxypyrazoline, 1,2,4-triazoline, and 7-hydroxy-1,3,4-triazepine.

We have studied the structure of such a product (I) from the reaction of benzamidrazonium iodide with acetylacetone. I was isolated in quantitative yield, mp 123-125° (from 2:1 ethyl acetate—acetonitrile).

According to the PMR data, the product salt exists in solution as a tautomeric mixture of the 5-hydroxypyrazoline form Ia (which is present as two stereoisomers, Z and E, due to hindered rotation around the C-N₍₁₎ bond) and the hydrazone form Ib (E,Z) in the proportions Ib:Ia(Z):Ia(E) = 9:61:30. PMR spectrum (DMSO-D₆): Ib(E,Z) - 2.13 (CH₃C=N), 2.25 (CH₃CO), 3.77 (α -CH₂), NH signals of low intensity and not localized; Ia(Z) - 1.02 (5-CH₃), 2.19 (3-CH₃), 3.12 and 3.35 (diastereotopic methylene protons, J_{AB} = 19.0 Hz), 9.45, 9.63 (NH₂) Ia(E) - 1.85 (5-CH₃), 1.96 (3-CH₃), 3.29 (CH₂), 8.69, 9.75 (NH₂). The aromatic ring protons give a multiplet in the 7.5-7.8 ppm region the OH protons of both Ia forms give a general broad signal at 7.40 ppm that disappears upon dilution with D₂O. Increase of temperature causes a broadening and consolidation of the signals of the E- and Z-isomers of the 5-hydroxy-pyrazoline form (Δ G = 85 kJ/mole). ¹³C NMR spectrum (DMSO-D₆): Ib - 19.8 (CH₃CN), 30.7 (CH₃CO), 53.2 (CH₂), 161.3, 165.0 (C=N₍₁₎, 194.2 (C=O); Ia(Z) - 16.4 (5-CH₃), 24.0 (3-CH₃), 53.5 (CH₂), 95.0 (C(₅)), 160.4, 166.1 (C(₉), C-N⁺); Ia(E) - 16.7 (5-CH₃), 26.5 (3-CH₃), 52.1 (CH₂), 94.7 (C(₅)), 159.5, 164.2 (C(₃), C-N⁺); aromatic ring signals lie in 126-133 ppm region.

The free base, which is obtained by alkaline treatment of the salt (mp 91-93°, from acetonitrile) exists in DMSO-D₆ solution as a 39:61 tautomeric mixture of hydrazone and ene hydrazine forms. From the temperature dependence of the equilibrium constant the thermodynamic parameters of the ene hydrazine—hydrazone transition can be determined: $\Delta \text{H}^{\circ} = 12.0 \text{ kJ/mole}$, $\Delta \text{S}^{\circ} = 43.8 \text{ J/mole•deg}$.

The effect of structural factors on the position of the tautomeric equilibrium in solutions of the salts and free bases is being studied.

LITERATURE CITED

- H. Neuenhoffer and F. Weischedel, Ann. Chem., 761, 34 (1972).
- 2. A. Spassov, E. Golovinsky, and G. Russev, Chem. Ber., 99, 3728 (1966).
- S. K. Robev, Dokl. Bolg. Akad. Nauk, 36, 1315 (1983).

S. M. Kirov Academy of Military Medicine, Leningrad 194175. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 850-851, June, 1985. Original article submitted December 11, 1984.